
CS399J: Programming with Java

The JavaTM Programming Platform was
designed with the internet in mind. Java provides
an object-oriented view of networking that allows
data to be easily sent between computers.
Additionally, Java provides straightforward, yet
powerful, mechanisms for multi-threaded
concurrent programming that are often used in
conjunction with networking.

Java Networking

• Networking Essentials

• Object Serialization

• Concurrent Programming

Copyright c©2000-2006 by David M. Whitlock. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or fee. Request permission to publish from
whitlock@cs.pdx.edu.

1

Networking With Java

Networking is ubiquitous throughout Java

• Applets are downloaded over the Internet

• Support for HTTP and URLs

• Classes that model data sent using the TCP and
UDP protocols

• The java.net package

2

Network Layering

Networking can be conceptualized in terms of “layers”

Transport (TCP, UDP)

Network (IP)

Hardware Interface

Physical Connection

Application (Java)

Network

Transport (TCP, UDP)

Network (IP)

Hardware Interface

Physical Connection

Application (Java)

Each layer only communicates with the layers directly
above and below it.

Allows for modular network design

3

Transport Protocols: TCP and UDP

TCP (Transmission Control Protocol) provides reliable
point-to-point connection-based communication

• Like making a phone call

• Used with applications such as FTP and telnet

UDP (User Datagram Protocol) provides non-guaranteed
packet-based communication

• Order of packets is not important – packets are
independent of each other

• Like sending a letter

• Less overhead than TCP

• Used for ping

4

Ports

A port is a conceptual hole in your computer through
which data flows

An application communicates with the outside world via a
port

Data that arrives from the network knows the which port
on which computer, it is destined for

Ports are identified by a 16-bit number. The first 1024
ports are reserved for use by the operating system and
certain protocols such as HTTP.

java.net package

The java.net package contains classes that allow
programs to communicate over a network in a
platform-independent way

5

java.net.URL

A Uniform Resource Locator (URL) provides an address
and an obtaining protocol for a resource on the internet.

http://www.cs.pdx.edu/~whitlock

A URL is modeled by the java.net.URL class

• A URL can be created from a String or can be
described by its protocol, host, port number, etc.

• openStream returns an java.io.InputStream that
can be used to read the contents of a URL

• openConnection returns a URLConnection that can
be use to interact with the URL (e.g. send CGI
requests)

Recall that java.io.File has a method named toURL
that returns the URL for a file.

6

java.net.URL example

package edu.pdx.cs399J.net;
import java.io.*;
import java.net.*;

public class DumpURL {
public static void main(String[] args) {

try {
URL url = new URL(args[0]);
InputStream urlStream = url.openStream();
InputStreamReader isr =

new InputStreamReader(urlStream);
BufferedReader br = new BufferedReader(isr);
while (br.ready()) {

String line = br.readLine();
System.out.println(line);

}
br.close();

} catch (MalformedURLException ex) {
System.err.println("** Bad URL: " + args[0]);
System.exit(1);

} catch (IOException ex) {
System.err.println("** IOException: " + ex);
System.exit(1);

}
}

}

7

java.net.URL example

$ java -cp ~/classes edu.---.DumpURL \
http://www.cs.pdx.edu/~whitlock

<HTML>

<HEAD>
<TITLE>CS399J Homepage</TITLE>
</HEAD>

<BODY bgcolor="white" text="black">

<P align="center">CS399J: Progamming With Java</P>

<P align="center">
Starring: Herr Professor David Whitlock

Wednesday nights 6:00-9:30 in PCAT 138

</P>

<P>Goal: To learn how to use the JavaTM programming
platform and to have fun doing it.</P>

<P>Textbook:
Thinking in Java by Bruce Eckel</P>

<P align="center">CS399J docs |
CS399J source</P>

...

8

Sockets

URLs are good for performing high-level internet-related
networking

Sockets are used for more specific application-level
networking

A socket is an endpoint of a TCP communication
between a server and a client

A server program (process) listens on a given port

A client program attempts to connect to a given port on a
given machine

If a connection is established between a client and a
server, each receives a socket through which they can
communicate

The java.net.Socket and java.net.ServerSocket
classes are used to establish network connections
between Java programs

9

java.net.ServerSocket

A ServerSocket is used by a server and waits for a client
to request a connection

• A ServerSocket is created by giving the port it
listens on (can also specify the number of backlog
messages)

• accept waits for a client to establish a connection,
the resulting Socket is returned

• setSoTimeout sets the number of milliseconds a
SocketServer waits before timing out

java.net.Socket

A Socket is created by a client that wants to
communicate with a server

• A Socket is created with a host name and port
number

• getInputStream returns an InputStream for reading
data from the socket

• getOutputStream returns an OutputStream for
writing data to the socket

10

A sample server

package edu.pdx.cs399J.net;
import java.io.*;
import java.net.*;

/**
* Reads strings from a socket until "bye" is
* encountered.
*/

public class Listener {
private static PrintStream out = System.out;
private static PrintStream err = System.err;

public static void main(String[] args) {
int port = 0;

try {
port = Integer.parseInt(args[0]);

} catch (NumberFormatException ex) {
err.println("** Bad port number: " + args[0]);
System.exit(1);

}

// continued...

11

A sample server

try {
// Backlog of 5 messages
ServerSocket server =

new ServerSocket(port, 5);

// Wait for the Speaker to connect
Socket socket = server.accept();

// Read from the Socket
InputStreamReader isr =

new InputStreamReader(socket.getInputStream());
BufferedReader listener =

new BufferedReader(isr);

String line = "";
while (!line.equals("bye")) {

line = listener.readLine();
out.println(line);

}

listener.close();

} catch (IOException ex) {
err.println("** IOException: " + ex);
System.exit(1);

}
}

}

12

A sample client

package edu.pdx.cs399J.net;
import java.io.*;
import java.net.*;

public class Speaker {
public static void main(String[] args) {

// <snip> Read the host and port number

try {
Socket socket = new Socket(host, port);
OutputStreamWriter osw =

new OutputStreamWriter(socket.getOutputStream());
PrintWriter speaker = new PrintWriter(osw);

for (int i = 2; i < args.length; i++) {
speaker.println(args[i]);

}
speaker.close();

} catch (UnknownHostException ex) {
System.err.println("** Could not connect " +

"to host: " + host);
} catch (IOException ex) {

System.err.println("** IOException: " + ex);
System.exit(1);

}
}

}

13

Working with our samples

Start the server in one shell...

$ java -cp ~/classes edu.---.Listener 12345

Start the client in another shell...

$ java -cp ~/classes edu.---.Speaker \
localhost 12345 Java networking is cool! bye

In the server shell...

Java
networking
is
cool!
bye

14

Other classes in the java.net package

Datagram classes for UDP connections: DatagramSocket
and DatagramPacket

Support for multicast networking: MulticastSocket

Utility classes for working with URLs: URLEncoder and
URLDecoder

Some security related classes: NetPermission,
SocketPermission, Authenticator, and
PasswordAuthentication

And, of course, a bunch of exceptions

15

Objects and bytes

Networking and sockets communicate at the byte level

However, Java works with objects

Object serialization is a process that converts objects into
bytes

Serialized objects can be sent over the network,
accessed from binary files, etc.

Any class that implements the java.io.Serializable
interface may be serialized

• Contains no methods – serialization happens “under
the covers”

• static and transient fields are not serialized

• For more control over serialization, implement
writeObject and readObject

Note that the non-serializable superclass of a serializable
class must have a zero-argument constructor

Some classes that are serializable include the “wrapper”
classes, Throwable, DateFormat, Date, Calendar, and
many of the collection classes

16

Objects and streams

java.io.ObjectOutputStream is used to write objects to
an OutputStream

• Has method to write all of the primitive types and
Objects to the underlying OutputStream

java.io.ObjectInputStream is used to read objects
from an InputStream

• The constructor for ObjectInputStream blocks until
an object can be read!

• Methods to read all of the primitive types and
Objects from the underlying InputStream

• If the class of a serialized object cannot be found,
then a ClassNotFoundException is thrown

17

Writing an object to an ObjectOutputStream

package edu.pdx.cs399J.net;
import java.io.*;
import java.util.*;

public class WriteDate {
public static void main(String[] args) {

String fileName = args[0];

try {
FileOutputStream fos =

new FileOutputStream(fileName);
ObjectOutputStream out =

new ObjectOutputStream(fos);
Date date = new Date();
System.out.println("Writing " + date);
out.writeObject(date);
out.flush();
out.close();

} catch (IOException ex) {
System.err.println("**IOException: " + ex);
System.exit(1);

}
}

}

18

Reading from an ObjectInputStream

package edu.pdx.cs399J.net;
import java.io.*;
import java.text.*;
import java.util.*;

public class ReadDate {
public static void main(String[] args) {

String fileName = args[0];

try {
FileInputStream fis =

new FileInputStream(fileName);
ObjectInputStream in =

new ObjectInputStream(fis);
Date date = (Date) in.readObject();
in.close();
System.out.println("Read " + date);

} catch (ClassNotFoundException ex) {
System.err.println("** No class " + ex);
System.exit(1);

} catch (IOException ex) {
System.err.println("**IOException: " + ex);
System.exit(1);

}
}

}

19

Working with our example

$ java -cp ~/classes edu.---.WriteDate date.out
Writing Sat Oct 28 13:39:40 PDT 2000

The file date.out is binary

$ java -cp ~/classes edu.---.ReadDate date.out
Read Sat Oct 28 13:39:40 PDT 2000

20

Class versioning

To ensure version compatibility between classes, each
class has a long serial version UID that is based on its
fields and methods

If the class of the object being de-serialized does not
have the same serial UID as the class in the VM that
de-serializes it, then an exception will be thrown.

A class’s serial UID may be explicitly set in its static
serialVersionUID field

The serialver tool will tell you a class’s serial UID

$ serialver java.util.ArrayList
java.util.ArrayList:

static final long serialVersionUID =
8683452581122892189L;

21

A more complex serialization example

To demonstrate Java serialization’s support for referential
integrity we will serialize an object graph made up of
Node objects

a

b c d

e

When we serialize node a, all of its descendents will get
serialized, too.

22

The Node class

package edu.pdx.cs399J.net;
import java.util.*;

public class Node implements java.io.Serializable {
private Collection children = new ArrayList();
private transient boolean beenVisited = false;

public void addChild(Node child) {
this.children.add(child);

}

/**
* Returns this node’s number of unvisited
* descendents
*/

public int traverse() {
int total = 1;
this.beenVisited = true;
Iterator iter = children.iterator();
while (iter.hasNext()) {

Node child = (Node) iter.next();
if (!child.beenVisited) {

total += child.traverse();
}

}
return total;

}
}

23

Writing an object graph

package edu.pdx.cs399J.net;
import java.io.*;

public class WriteNodes {
public static void main(String[] args) {

String fileName = args[0];
Node a = new Node(); Node b = new Node();
Node c = new Node(); Node d = new Node();
Node e = new Node();
a.addChild(b); a.addChild(c);
a.addChild(d); b.addChild(e);
c.addChild(e); d.addChild(e);
System.out.println("Graph has " + a.traverse()

+ " nodes");
try {

FileOutputStream fos =
new FileOutputStream(fileName);

ObjectOutputStream out =
new ObjectOutputStream(fos);

out.writeObject(a);
out.flush();
out.close();

} catch (IOException ex) {
System.err.println("** IOException: " + ex);
System.exit(1);

}
}

}

24

Reading an object graph

package edu.pdx.cs399J.net;
import java.io.*;

public class ReadNodes {
public static void main(String[] args) {

String fileName = args[0];

try {
FileInputStream fis =

new FileInputStream(fileName);
ObjectInputStream in =

new ObjectInputStream(fis);
Node root = (Node) in.readObject();
System.out.println("Graph has " +

root.traverse() + " nodes");

} catch (ClassNotFoundException ex) {
System.err.println("** No class: " + ex);
System.exit(1);

} catch (IOException ex) {
System.err.println("** IOException: " + ex);
System.exit(1);

}
}

}

25

Working with the object graph example

java -cp ~/classes edu.---.WriteNodes nodes.out
Graph has 5 nodes

File nodes.out is binary

$ java -cp ~/classes edu.---.ReadNodes nodes.out
Graph has 5 nodes

As expected, the same number of nodes were serialized
and de-serialized

Java serialization maintains referential integrity: you refer
to the same object both before and after serialization

Why was it important that Node’s beenVisited field be
declared transient?

26

Concurrent Programming

As programs become more complex, they tend to perform
actions that are independent of each other.

As a result, it becomes desirable to have multiple threads
of execution that run concurrently.

The Java programming language provides several built-in
mechanisms for handling concurrent operations

These mechanisms include

• java.lang.Thread class

• synchronized methods and code blocks

• wait/notify methods

27

java.lang.Thread

Thread represents a thread of execution within a Java
Virtual Machine

• run: Contains the code that is executed by a Thread

• start: Begins execution of a Thread, calls the run
method (like fork in UNIX)

• isAlive: Determines whether or not a Thread is
running (may be blocked)

• setPriority: Sets the “priority” of a Thread (varies
by implementation, not very effective)

• setDaemon: Sets whether a thread is a user or
daemon thread. The JVM exits when only daemon
threads are running.

• join: Blocks the calling thread until the target
Thread dies (“wait for the other thread to die before
continuing”)

• interrupt: Interrupts a Thread. If the thread is
waiting, it will receive an InterruptedException.

28

java.lang.Thread

Thread has several interesting static methods

• currentThread: Returns the Thread that is currently
executing

• sleep: Causes the currently executing Thread to wait
for a given amount of time (in milliseconds)

• yield: Pauses the currently executing Thread and
lets other threads run (just a hint)

• holdsLock(Object o): Returns true if the currently
executing Thread holds the “lock” on a given Object

– Especially useful with assertions:
assert Thread.holdsLock(lock);

29

java.lang.Thread example

Big Bird and Mr. Snuffleupagus decide to have a race to
see who can count to six first.

package edu.pdx.cs399J.net;
public class Counter extends Thread {

private String name;

public Counter(String name) {
this.name = name;

}

public void run() {
// Wait for a random amount of time and
// then print a number
for (int i = 1; i <= 6; i++) {

try {
long time = (long) (Math.random() * 1000);

Thread.sleep(time);

} catch (InterruptedException ex) {
return;

}

System.out.println(this.name + ": " + i);
}

}
}

30

hava.lang.Thread example

package edu.pdx.cs399J.net;

public class CountingRace {
public static void main(String[] args) {

Counter bigBird = new Counter("BigBird");
Counter snuffy = new Counter("Snuffy");

bigBird.start();
snuffy.start();

}
}

$ java -cp ~/classes edu.---.CountingRace
BigBird: 1
Snuffy: 1
Snuffy: 2
Snuffy: 3
BigBird: 2
BigBird: 3
Snuffy: 4
BigBird: 4
Snuffy: 5
Snuffy: 6
BigBird: 5
BigBird: 6

31

Group Threads Together

A Thread may belong to a ThreadGroup

• Each ThreadGroup knows information about its
Threads such as the number that are active

• Some operations (such as interrupt) can be
performed on all of the threads in the group

• ThreadGroups may offer some security

– You must be a member of thread group in order to
access the threads in the group

• A ThreadGroup may be nested inside another
ThreadGroup (its “parent”)

• A ThreadGroup’s exceptionOccurred method is
invoked when an uncaught exception occurs in a
thread

– Often overridden to log the exception

32

Thread Coordination

Very often, you have a bunch of threads doing something,
and you want them to stop

• Each thread has an interrupt status that denotes
whether or not it has been interrupted

• Thread’s interrupt method sets the interrupt status

• The interrupt status can be queried with
isInterrupted (instance method) or
Thread.interrupted (static method that applies to
current thread – clears interrupt status)

• If a thread is interrupted while it is sleeping, joining,
or waiting, then an InterruptedException is thrown

– Note that the interrupt status is not set

The following example uses interrupts to tell a bunch of
working threads to stop

33

Thread Coordination Example

package edu.pdx.cs399J.net;
import java.util.Random;

public class WorkingThread extends Thread {

public void run() {
Random random = new Random();
while (true) {

if (this.isInterrupted()) {
System.out.println(this + " is done");
return;

}

int work = Math.abs(random.nextInt(100000));
System.out.println(this + " working for " +

work);
for (int l = 0; l < work; l++);

try {
int sleep = random.nextInt(2000);
System.out.println(this + " sleeping for " +

sleep + " ms");
Thread.sleep(sleep);

} catch (InterruptedException ex) {
System.out.println(this +

" interrupted while sleeping");
return; } } } }

34

Thread Coordination Example

package edu.pdx.cs399J.net;

public class InterruptingThread extends Thread {
private ThreadGroup group;
private int sleep;

public void run() {
System.out.println(this + " sleeping for " +

this.sleep + " ms");
try {

Thread.sleep(this.sleep);

} catch (InterruptedException ex) {
System.err.println("WHY?");
System.exit(1);

}

System.out.println(this +
" interrupting workers");

this.group.interrupt();
}

35

Thread Coordination Example

public static void main(String[] args) {
int sleep = Integer.parseInt(args[0]) * 1000;

ThreadGroup group =
new ThreadGroup("Worker threads");

for (int i = 0; i < 5; i++) {
Thread thread =

new WorkingThread(group, "Worker " + i);
thread.start();

}

InterruptingThread interrupting =
new InterruptingThread("interrupter");

interrupting.group = group;
interrupting.sleep = sleep;
interrupting.start();

}
}

In your thread’s “work loop” you should always check to
see whether or it has been interrupted before doing a lot
of work.

36

java.lang.Runnable

Extending Thread is rarely the right thing to do

Single inheritance only allows one superclass, what if
your class needs other behavior in addition to thread
semantics?

Interface Runnable has a run method

Threads can be built around Runnable objects

Using Runnable is highly recommended

37

Concurrent Access to Data

When there are multiple threads operating on the same
data, we have to ensure that the data is accessed in a
consistent state

Classic example: A bank account

• If two transactions operate on a bank account at the
same time, the balance may not be correct

package edu.pdx.cs399J.net;

public class BankAccount {
private int balance;

public int getBalance() {
try {

long time = (long) (Math.random() * 1000);
Thread.sleep(time);

} catch (InterruptedException ex) { }
return this.balance;

}
public void setBalance(int balance) {

try {
long time = (long) (Math.random() * 1000);
Thread.sleep(time);

} catch (InterruptedException ex) { }
this.balance = balance;

}
}

38

A Naive ATM Machine

package edu.pdx.cs399J.net;
import java.io.PrintStream;

public class ATM implements Runnable {
protected static PrintStream out = System.out;

protected String name;
protected BankAccount account;
protected int[] transactions;

public ATM(String name, BankAccount account,
int[] transactions) {

this.name = name;
this.account = account;
this.transactions = transactions;

}

public void run() {
for (int i = 0; i < transactions.length; i++) {

int balance = account.getBalance();
balance += transactions[i];
account.setBalance(balance);

}
}

// continued...

39

A Naive ATM Machine

public static void main(String[] args) {
BankAccount account = new BankAccount();
account.setBalance(1000);
out.println("Initial balance: " +

account.getBalance());

int[] trans1 = {-200, 400, 100, -300};
ATM atm1 = new ATM("ATM1", account, trans1);
int[] trans2 = {400, 100, -300, -200};
ATM atm2 = new ATM("ATM2", account, trans2);
int[] trans3 = {-300, -200, 100, 400};
ATM atm3 = new ATM("ATM3", account, trans3);

Thread t1 = new Thread(atm1); t1.start();
Thread t2 = new Thread(atm2); t2.start();
Thread t3 = new Thread(atm3); t3.start();

// Wait for all threads to finish
try {

t1.join(); t2.join(); t3.join();
} catch (InterruptedException ex) {

return;
}
out.println("Final balance: " +

account.getBalance());
}

}

40

A Naive ATM Machine

$ java -cp ~/classes edu.pdx.cs399J.net.ATM
Initial balance: 1000
ATM2 got balance 1000
ATM2 perform 400
ATM2 set balance to 1400
ATM1 got balance 1000 # Wrong!
ATM1 perform -200
ATM1 set balance to 800
ATM3 got balance 1000 # Wrong!
ATM3 perform -300
ATM3 set balance to 700
ATM3 got balance 800 # Wrong!
...
Final balance: 1400

Each ATM performs a net change of zero, but because
they saw an inaccurate view of the balance, there was a
net change.

How do we ensure that the ATMs always see the correct
view of the balance?

41

Synchronized Access to Data

Every Java object has a monitor associated with it

A monitor is a thread synchronization device that can be
thought of as a “lock”

Only one thread may hold the lock at a time. Other
threads that want the lock must wait in line

In Java, a lock is obtained with the synchronized
statement

Object lock;
...
// Wait to obtain the lock
synchronized(lock) {

// I am the only thread that will run this code
// This is a ‘‘critical section’’
...

}
// Give up the lock
...

We will modify our ATM example so that it obtains a lock
on the account before performing the transaction.

42

A synchronized ATM Machine

public void run() {
for (int i = 0; i < transactions.length; i++) {

// Get the lock on the account
synchronized(account) {

int balance = account.getBalance();
balance += transactions[i];
account.setBalance(balance);

}
// Give up the lock

}
}

$ java -cp ~/classes edu.---.SynchronizedATM
Initial balance: 1000
ATM1 got balance 1000
ATM1 perform -200
ATM1 set balance to 800
ATM2 got balance 800 # Right!
ATM2 perform 400
ATM2 set balance to 1200
ATM3 got balance 1200 # Right!
ATM3 perform -300
ATM3 set balance to 900
ATM1 got balance 900 # Right
...
Final balance: 1000

Note that the synchronized code runs slower
43

synchronized methods

Methods can be declared synchronized

public synchronized void doTransaction(int i) {
...

}

In synchronized methods, the lock on the this object is
obtained before executing the code

public void doTransaction(int i) {
synchronized(this) {

...
}

}

synchronized methods let the object instead of the caller
worry about synchronization.

Vector is synchronized, but the JDK1.2 collection
classes are not

Collections.synchronizedCollection returns a
collection whose methods are synchronized

44

A synchronized Bank Account

package edu.pdx.cs399J.net;

/**
* Synchronized methods ensure that the data in
* the balance is accessed correctly.
*/

public class SynchronizedBankAccount
extends BankAccount {

private static int nextId = 1;
private int id = nextId++;
private int balance;

public synchronized int getBalance() {
return super.getBalance();

}

public synchronized void setBalance(int balance) {
super.setBalance(balance);

}

public synchronized void doTransaction(int trans) {
// Will not attempt to re-obtain lock
int balance = this.getBalance();
balance += trans;
this.setBalance(balance);

}
}

45

Transferring between two accounts

package edu.pdx.cs399J.net;

public class Transfer implements Runnable {
private BankAccount src;
private BankAccount dest;
private int amount;

public Transfer(BankAccount src,
BankAccount dest, int amount) {

this.src = src;
this.dest = dest;
this.amount = amount;

}

public void run() {
System.out.println("Transferring " + this.amount);

// Have to obtain locks on both accounts
synchronized(this.src) {

int srcBalance = src.getBalance();

synchronized(this.dest) {
int destBalance = dest.getBalance();
src.setBalance(srcBalance - this.amount);
dest.setBalance(destBalance + this.amount);

}
}

}

46

Transferring between two accounts

/**
* Creates and performs a <code>Transfer</code>
*/

public static void main(String[] args) {
BankAccount acc1 = new BankAccount();
acc1.setBalance(1000);
BankAccount acc2 = new BankAccount();
acc2.setBalance(500);

(new Thread(new Transfer(acc1, acc2, 300))).start();
(new Thread(new Transfer(acc2, acc1, 100))).start();

}
}

$ java -cp ~/classes edu.---.Transfer
Transferring 300
Transferring 100
...

What happened?

Each thread held a lock that the other was waiting on –
Deadlock!

47

Avoiding Deadlock

When threads access shared data, the program designer
must be very careful to ensure that deadlock does not
occur

Obtain a monolithic lock before accessing any shared
data

• static Object lock object in Transfer class

• Slow and may unnecessarily prevent other threads
from running

Order the shared data and always obtain the locks in
order

• Obtain the lock on the account with the lowest id first,
regardless of whether it is the source or destination

• Will all of the threads always finish?

48

The Producer/Consumer Problem

We often have a situation where one thread (the
producer) is making something that some other thread
(the consumer) wants.

How do we coordinate activity between the two?

The easiest way to do this is Java is to use wait and
notify

Every Object has three thread-related methods

• wait: Have the current thread wait until the target
object is notified by another thread

• notify: Let one of the threads that is waiting on this
object know that it can continue executing

• notifyAll: Notify all threads waiting on the target
object

Note that the thread must obtain the lock on an object
before invoking its wait or notify method

wait releases the lock before waiting
49

You want fries with that?

As an example, we are going to model a McDonalds that
has a bunch of customers who each want a BigMacTM

and a number of employees who cook the BigMacs.

public class McDonalds {
private static java.io.PrintStream err =

System.err;
private int nBigMacs;

public McDonalds(int nBigMacs) {
this.nBigMacs = nBigMacs;

}

public synchronized boolean moreBigMacs() {
if (this.nBigMacs <= 0) {

return false;
} else {

this.nBigMacs--;
return true;

}
}

// continued...

50

Can I super-size that, ma’am?

public static void main(String[] args) {
int nCustomers = 0;
int nEmployees = 0;

try {
nCustomers = Integer.parseInt(args[0]);
nEmployees = Integer.parseInt(args[1]);

} catch (NumberFormatException ex) {
err.println("** NumberFormatException");
System.exit(1);

}

McDonalds mcDonalds = new McDonalds(nCustomers);

for (int i = 0; i < nCustomers; i++) {
McCustomer customer =

new McCustomer(i, mcDonalds);
(new Thread(customer)).start();

}

for (int i = 0; i < nEmployees; i++) {
McEmployee employee =

new McEmployee(i, mcDonalds);
(new Thread(employee)).start();

}
}

}

51

One order of death-sticks to go!

package edu.pdx.cs399J.net;

public class McCustomer implements Runnable {
private String name;
private McDonalds mcDonalds;

public McCustomer(int id, McDonalds mcDonalds) {
this.name = "Customer " + id;
this.mcDonalds = mcDonalds;

}

public void run() {
System.out.println(this.name +

" wants a BigMac");

try {
synchronized(this.mcDonalds) {

this.mcDonalds.wait();
}

} catch (InterruptedException ex) {
return;

}

System.out.println(this.name + " got a BigMac");
}

}

52

Can I take your order, please?

package edu.pdx.cs399J.net;
public class McEmployee implements Runnable {

private String name;
private McDonalds mcDonalds;

public McEmployee(int id, McDonalds mcDonalds) {
this.name = "Employee " + id;
this.mcDonalds = mcDonalds;

}

public void run() {
java.io.PrintStream out = System.out;
out.println(this.name + " arrives at work");
while (this.mcDonalds.moreBigMacs()) {

out.println(this.name + " starts a BigMac");
long wait = (long) (Math.random() * 10000);
try {

Thread.sleep(wait);
} catch (InterruptedException ex) {

return;
}
out.println(this.name + " finishes a BigMac");
synchronized(this.mcDonalds) {

this.mcDonalds.notify();
}

}
}

}

53

Hey, you got to be “Grimace” last week!

$ java -cp ~/classes edu.---.McDonalds 4 2
Customer 0 wants a BigMac
Customer 1 wants a BigMac
Customer 2 wants a BigMac
Customer 3 wants a BigMac
Employee 0 arrives at work
Employee 0 starts a BigMac
Employee 1 arrives at work
Employee 1 starts a BigMac
Employee 0 finishes a BigMac
Customer 0 got a BigMac
Employee 0 starts a BigMac
Employee 1 finishes a BigMac
Customer 1 got a BigMac
Employee 1 starts a BigMac
Employee 0 finishes a BigMac
Customer 2 got a BigMac
Employee 1 finishes a BigMac
Customer 3 got a BigMac

54

Putting it all together

So far, we’ve learned about networking, object
serialization, and writing multi-threaded applications.

We are going to demonstrate these three concepts with a
rudimentary chat program that allows two people to talk
with one another

One user starts up the chat program on a given port and
waits for the other to connect via a socket

Each user types a message that is sent to the other over
the network as a serialized object

Mutiple threads are used to listen for incoming messages
and to send outgoing messages

S
o
c
k
e
t

ChatSpeaker

ChatSession ChatSession

ChatSpeaker

ChatListenerChatListener

55

ChatMessages are sent back and forth

package edu.pdx.cs399J.net;
import java.io.Serializable;
import java.text.*;
import java.util.*;

public class ChatMessage implements Serializable {
private String sender;
private Date date;
private String text;

public ChatMessage(String sender, String text) {
this.sender = sender;
this.date = new Date();
this.text = text;

}
public boolean isLastMessage() {

return this.text.trim().equals("bye");
}
public String toString() {

DateFormat df =
DateFormat.getTimeInstance(DateFormat.MEDIUM);

StringBuffer sb = new StringBuffer();
sb.append(this.sender); sb.append(" [");
sb.append(df.format(this.date));
sb.append("]> "); sb.append(this.text);
return sb.toString();

}
}

56

A ChatSpeaker sends ChatMessages

package edu.pdx.cs399J.net;
import java.io.*;
import java.util.*;
import java.net.*;

public class ChatSpeaker implements Runnable {
private static PrintStream err = System.err;

private List outgoing; // Outgoing messages
private BufferedOutputStream bos;

public ChatSpeaker() {
this.outgoing = new ArrayList();

}

public void setSocket(Socket socket) {
try {

// Make streams for reading and writing
this.bos =

new BufferedOutputStream(
socket.getOutputStream());

} catch (IOException ex) {
err.println("** IOException: " + ex);
System.exit(1);

}
}

57

ChatSpeaker continued

public void run() {
while (true) {

try {
// Is there a message to send?
synchronized(this.outgoing) {

if (!this.outgoing.isEmpty()) {
ChatMessage m =

(ChatMessage) this.outgoing.remove(0);
ObjectOutputStream out =

new ObjectOutputStream(bos);
out.writeObject(m);
out.flush();

if (m.isLastMessage()) {
// Send the last message and
// then go home
break;

}
}
// Wait for a message
this.outgoing.wait();

}

} catch (InterruptedException ex) {
break;

58

ChatSpeaker concludes

} catch (IOException ex) {
err.println("** IOException: " + ex);
System.exit(1);
break; // Need for compilation

}
}

}

public void sendMessage(ChatMessage message) {
synchronized(this.outgoing) {

this.outgoing.add(message);
this.outgoing.notify();

}
}

}

Note synchronization on the outgoing queue

ChatMessage objects are serialized and sent over the wire

59

A ChatListener receives ChatMessages

package edu.pdx.cs399J.net;
import java.io.*;
import java.util.*;
import java.net.*;

public class ChatListener implements Runnable {
private static PrintStream err = System.err;

private List incoming; // Incoming messages
private BufferedInputStream bis;

public ChatListener() {
this.incoming = new ArrayList();

}

public void setSocket(Socket socket) {
try {

this.bis =
new BufferedInputStream(socket.getInputStream());

} catch (IOException ex) {
err.println("** IOException: " + ex);
System.exit(1);

}
}

60

ChatListener continued

public void run() {
while (true) {

try {
// Is there a message to receive?
ObjectInputStream in =

new ObjectInputStream(bis);
ChatMessage m = (ChatMessage) in.readObject();
if (m != null) {

synchronized(this.incoming) {
this.incoming.add(m);

}

if (m.isLastMessage()) {
break;

}
}

} catch (ClassNotFoundException ex) {
err.println("** Could not find class: " + ex);
System.exit(1);

} catch (IOException ex) {
err.println("** IOException: " + ex);
System.exit(1);

}
}

}

61

ChatListener concluded

public List getMessages() {
List messages = new ArrayList();
synchronized(this.incoming) {

// Why can’t we just return this.incoming?

messages.addAll(this.incoming);
this.incoming.clear();

}

return messages;
}

}

The fact that the ObjectInputStream’s constructor blocks
until the stream is available complicates our design

Each message must know if it is the last

It would be more elegant if some other thread could tell
the listener to stop

62

A ChatCommunicator handles communication

A ChatCommunicator attempts to make a connection to
the other chat program. Then, it starts the speaker and
the listener.

package edu.pdx.cs399J.net;
import java.io.*;
import java.util.*;
import java.net.*;

public class ChatCommunicator implements Runnable {
private static PrintStream err = System.err;
private int port; // Where the socket is
private ChatSpeaker speaker; // Send messsages
private ChatListener listener; // Receives messages

public ChatCommunicator(int port) {
this.port = port;

}

public void startup() {
this.speaker = new ChatSpeaker();
this.listener = new ChatListener();
(new Thread(this)).start();

}

// continued...

63

ChatCommunicator continued...

public void run() {
// Attempt to make a socket
Socket socket = null;
try {

socket = new Socket("localhost", port);

} catch (IOException ex) {
// Nobody listening

}

if (socket == null) {
// Listen
try {

ServerSocket server =
new ServerSocket(port, 10);

socket = server.accept();
} catch (IOException ex) {

err.println("** IOException: " + ex);
System.exit(1);

}
}

this.speaker.setSocket(socket);
this.listener.setSocket(socket);

(new Thread(this.speaker)).start();
(new Thread(this.listener)).start();

}

64

ChatCommunicator delegates

ChatCommunicator delegates some calls to the speaker
and listener. Note that these methods will be invoked in a
thread other than the ones that run the speaker and
listener.

/**
* Delegates to the <code>ChatSpeaker</code>
*/

public void sendMessage(ChatMessage message) {
this.speaker.sendMessage(message);

}

/**
* Gets messages from the <code>ChatListener</code>
*/

public List getMessages() {
return this.listener.getMessages();

}
}

65

The user runs a ChatSession

package edu.pdx.cs399J.net;
import java.io.*;
import java.net.*;
import java.util.*;

public class ChatSession {
private static PrintStream out = System.out;
private static PrintStream err = System.err;

public static void main(String[] args) {
String owner = args[0];
int port = 0;

try {
port = Integer.parseInt(args[1]);

} catch (NumberFormatException ex) {
err.println("** Bad port number: " + args[1]);
System.exit(1);

}

out.println("Establishing connection");

// Make a new ChatCommunicate and start it up
ChatCommunicator communicator =

new ChatCommunicator(port);
communicator.startup();

66

ChatSession continued

// Prompt for input, read from the command line
// until the "bye" message is inputted.
try {

InputStreamReader isr =
new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);

String line = "";
while (!line.trim().equals("bye")) {

// Print and read messages from the listener
Iterator messages =

communicator.getMessages().iterator();
while (messages.hasNext()) {

out.println(messages.next());
}

// Prompt for user input
out.print(owner + "> ");
out.flush();

line = br.readLine();

if (!line.trim().equals("")) {
ChatMessage message =

new ChatMessage(owner, line);
communicator.sendMessage(message);

}
}

67

ChatSession concluded

out.println("Waiting for other side to " +
"shut down");

} catch (IOException ex) {
err.println("** IOException: " + ex);
System.exit(1);

}
}

}

$ java -cp ~/classes edu.---.ChatSession Dave1 12345
Establishing connection
Dave1> Are you there?
Dave2 [2:55:41 PM]> Hello
Dave1> bye
Waiting for other side to shut down

$ java -cp ~/classes edu.---.ChatSession Dave2 12345
Establishing connection
Dave2> Hello
Dave2> This is cool
Dave1 [2:55:45 PM]> Are you there?
Dave2> bye
Waiting for other side to shut down

68

Summary

Java has built-in facilities for performing networking

• URL for accessing locations on the internet

• Sockets with stream-like behavior

• Also supports UDP datagrams

Object serialization is used to convert Java objects into
byte streams

• Happens automagically – usually little work on the
programmer’s part

Java also supports multiple threads of execution and has
a number of mechanisms to control concurrent programs

• Thread class and Runnable interface

• synchronized methods and code blocks

• wait/notify methods

69

