Assignment 7

Assignment 7 – A Generic Web Service

Compiling, Deploying, and Modifying a Simple Web Service

I. Overview

The purpose of this assignment is to allow you to familiarize yourself with simple web services. This assignment will be created using Java and several packages from the Apache open source project. This handout will provide you with the steps to compile and deploy a prewritten web service. Towards the end of the assignment, you will be required to modify the code that is given to you to help broaden your experience with developing web services.

II. Creating a web service

Specifics:

We will:

· Create the web service source code as a jws (Java web service) file.

· Generate stubs (using Axis tools).

· Compile the files created in the previous step.

· Create client source and compile.

· Execute client to access the service.

· Extend the service by adding functionality.

The web service for this assignment is a simple math service that can perform an arithmetic operation (returning the square of its argument) for a client. The math service itself is not stateful, meaning that the result of any previous arithmetic operation is not remembered by the service.

Step 1 – Setup

Type “. ~jmache/net/runme” to set environment variables

Type “sudo startup.sh” to start the Apache Tomcat web services engine

Step 2 – Defining the service with Java

The first step is to write the code that will be the actual service. This service does not have to be very complicated or any special code. For this assignment, we will be using a class called “MyMath” which resides in the file “MyMath.jws”. Using your favorite text editor, type in this class and save it into the correct file:

public class MyMath

{

 public int squared(int x) {

 return x * x;

 }

}

Once this task has been completed, we must now place the file where Apache Axis can find the file. This directory is “$CATALINA_HOME/webapps/axis”. $CATALINA_HOME is the environment variable specifying the path to the home directory of the Apache Tomcat java servlet container.

cp MyMath.jws $CATALINA_HOME/webapps/axis
You can now surf the web to find your newly deployed web service. If you point your web browser to the following url, you will be able to see how your service is deployed. (http://localhost:8080/axis/) This should bring up a window that looks similar to the following:

[image: image1.png]rectory Li g For /testaccount/ - Up To /

Filename Size Last Modified
Caleulator.jus 0.7 % Wed, 25 May 2005 16:06:51 GMT
Myech. jus 0.1 1 Wed, 25 May 2005 13:31:37 GMT

che

mcat/5.5.9

Notice that you now have a “MyMath.jws” available as a link. Click on this link to get the following window:

[image: image2.png]There is a Web Service here

Click to see the WSDL

Even though we can connect to the service from a web browser, we are unable to have another client access and use the service. The next step of the assignment will go through the steps of allowing a client to connect to the service and how to write the client that will access the service.

Step 3 - Create the Java source files needed for a web service

The second step defines an interface for the service that a client can use to access the service. The interface is defined using the Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl, which specifies that operations are exposed through the web service clients. Axis (http://ws.apache.org/axis/) is an implementation of the Simple Object Access Protocol (SOAP). Use Axis tool WSDL2Java to generate the Java source files needed by a client to access the web service from the MyMath.jws file that you created in step one. There are two approaches to creating the WSDL and interface classes. This assignment handout will show both, starting with the more difficult one.

Approach One: Use Two Commands
The first way to create the interfaces and WSDL file is to use two tools that come with Apache Axis.

Substep 3.1: Use Java2WSDL

The first tool is Java2WSDL. The Java2WSDL tool creates a “WSDL document [that] will contain the appropriate WSDL types, messages, portType, bindings and service descriptions to support a SOAP rpc, encoding web service.
” In order to use this tool, you must define a class, MyMath.java, that contains the same contents as the MyMath.jws file.

cp MyMath.jws MyMath.java
Compile the class by typing the following command:

javac MyMath.java

We can now generate the WSDL file from the Java interface. To do this, run the following command:

java –cp $AXISCLASSPATH:. org.apache.axis.wsdl.Java2WSDL –o \ MyMath.wsdl -l"http://localhost:8080/axis/MyMath" MyMath

The arguments to this command are quite important.

· The ‘org.apache.axis.wsdl.Java2WSDL’ argument gives the package information on where to find the Java2WSDL class.

· The ‘-o MyMath.wsdl’ argument gives the filename of the output WSDL file.

· The ‘-l”http://localhost:8080/axis/MyMath”' argument gives the location of the service in question.

The output of this command is a single WSDL file called ‘MyMath.wsdl’. The complete WSDL file is provided below:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://DefaultNamespace" xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://DefaultNamespace" xmlns:intf="http://DefaultNamespace" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.2

Built on May 03, 2006 (02:20:24 PDT)-->

 <wsdl:message name="squaredRequest">

 <wsdl:part name="in0" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="squaredResponse">

 <wsdl:part name="squaredReturn" type="xsd:int"/>

 </wsdl:message>

 <wsdl:portType name="MyMath">

 <wsdl:operation name="squared" parameterOrder="in0">

 <wsdl:input message="impl:squaredRequest" name="squaredRequest"/>

 <wsdl:output message="impl:squaredResponse" name="squaredResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="MyMathSoapBinding" type="impl:MyMath">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/h

ttp"/>

 <wsdl:operation name="squared">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="squaredRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encodi

ng/" namespace="http://DefaultNamespace" use="encoded"/>

 </wsdl:input>

 <wsdl:output name="squaredResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encodi

ng/" namespace="http://DefaultNamespace" use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="MyMathService">

 <wsdl:port binding="impl:MyMathSoapBinding" name="MyMath">

 <wsdlsoap:address location="http://localhost:8080/axis/testaccount/MyMa

th"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Substep 3.2: Use WSDL2Java

With the WSDL file created, you can now type the following command to generate the Java source files required for the client:

java –cp $AXISCLASSPATH:. org.apache.axis.wsdl.WSDL2Java -o . \

-d Session -s -S true -p localhost.axis.MyMath_jws MyMath.wsdl

The arguments are very important for this command as well.

· The ‘org.apache.axis.wsdl.WSDL2Java’ argument defines which package the WSDL2Java class resides in.

· The ‘-o’ argument specifies that the output files should be placed in the current directory.

· The ‘-s S true’ argument specifies that the server side bindings and the skeleton should be deployed.

· The ‘-d Session’ argument specifies that the build should be done on a ‘Session’ basis.

· The ‘-p localhost.axis.MyMath_jws’ argument specifies the package the classes and stubs should be placed in. This command outputs several files which will be described later in this section.

Approach Two: Use One Command
The second way to create the interfaces and WSDL file involves only one command from the command line. This change in the command is syntactic sugar for the previous steps we have already completed. This method is shown as an option to the previous two substeps. While you are still in the directory WebServices, you can run the automatic generation function by typing the following command:

java -cp $AXISCLASSPATH:. org.apache.axis.wsdl.WSDL2Java \

http://localhost:8080/axis/MyMath.jws?wsdl

The WSDL2Java program will locate the MyMath.jws file and will create all of the needed Java source files. The second argument of the command is a URL (Universal Resource Location) specifying the web server that is listening on TCP port 8080 on the local machine. The port number for your particular server may be different than this. If you receive an error message about the port information, please contact your system administrator.

The result of executing the WSDL2Java program is a directory inside of WebServices called 'localhost'. The 'localhost' directory has a subdirectory named 'axis' which has a subdirectory named 'MyMath_jws'. This series of directories was created because it follows the parts of the URL provided above. The directory 'MyMath_jws' has four files within it:

· MyMath.java: source for the Java interface for MyMath class.

· MyMathService.java: source for the Java interface that includes the getMyMath method specification.

· MyMathServiceLocator.java: source for the Java class MyMathServiceLocator.

· MyMathSoapBindingStub.java: source for the Java class MyMathSoapBindingStub.

These files are the Java source files created by WSDL2Java and are needed to make MyMath’s client. The command invoking WSDL2Java could have instead been written as:

java -cp $AXISCLASSPATH:. org.apache.axis.wsdl.WSDL2Java \

http://yourserver.yourdomain.edu:8080/axis/MyMath.jws?wsdl

The difference is that the Fully Qualified Domain Name of the current machine, yourserver.yourdomain.edu, is being used instead of the term localhost. The only difference in the output is that the directory created in the current directory is not named 'localhost'. Instead, you get a directory called 'edu' which has a subdirectory 'yourdomain', and so forth.

Step 4 – Compile Java Source Files Just Generated

While you are still in the directory WebServices compile the four Java source files generated by the previous step with the command:

javac -cp $AXISCLASSPATH:. localhost/axis/MyMath_jws/*.java

or the command

javac -cp $AXISCLASSPATH:. \
edu/yourdomain/yourserver/MyMath_jws/*.java

depending on how you invoked the WSDL2Java command as described earlier.

Step 5 - Write the Client Source

While you are still in the directory WebServices create a file named 'MyMathClient.java' that contains the code for the client. The client source code that you are to place in the 'MyMathClient.java' file is given below. The import statements will assume that you invoked the WSDL2Java program using localhost, not yourserver.yourdomain.edu.

// Required for Axis 1.1:

import localhost.axis.MyMath_jws.MyMathServiceLocator;

import localhost.axis.MyMath_jws.MyMathService;

import localhost.axis.MyMath_jws.MyMath;

import org.apache.axis.client.*; // Axis 1.1

import org.apache.axis.encoding.XMLType; // Required as of Axis 1.2

import org.apache.axis.utils.Options; // Required as of Axis 1.2

import java.net.*; // Required for URL

import javax.xml.rpc.ParameterMode; // Required as of Axis 1.2

public class MyMathClient {

 public static void main(String args[]) throws Exception {

 MyMathService service = new MyMathServiceLocator(); // locate the service

 Integer x = new Integer(args[1]); // Take the command line parameter

 // and generate an Integer object.

 Options options = new Options(args);

 // Passing arguments. Required

 // for getPort command.

 String endpoint = "http://localhost:" + options.getPort() +

 "/axis/MyMath.jws"; // Tell the class where to

 // look for service.

 Call call = (Call) service.createCall(); // Designate that a call will

 // be made.

 call.setTargetEndpointAddress(new URL(endpoint)); // designate the

 // target service

 call.setOperationName("squared"); // the method name of the service

 // define the parameters that the method requires.

 call.addParameter("op1" , XMLType.XSD_INT, ParameterMode.IN);

 // define the parameters that the method returns.

 call.addParameter("op2" , XMLType.XSD_INT , ParameterMode.OUT);

 // Set the return type of the call. (Required because of addParameter.)

 call.setReturnType(XMLType.XSD_INT);

 // Hold the result of the method call and make the call. (Invoke must

 // always have an array of objects passed to it.)

 int ret = (Integer) call.invoke(new Object[] { x });

 // Show the result:

 System.out.println("The square of “ + x + “ is “ + ret);

 }

}

This client exercises the service by calling it to compute and return the square of the number passed as an argument.

Step 6 – Compile Client Code

While you are still in the directory WebServices compile the client code with:

javac -cp $AXISCLASSPATH:. MyMathClient.java

Be careful to ensure there is at least one space before the argument 'MyMathClient.java' to separate it from the previous argument. The previous argument, '$AXISCLASSPATH:.' has the ':.' at the end of it to force the Java compiler to look at the current directory.

Step 7 – Execute web service Program

While you are still in the directory WebServices execute the client code with:

java -cp $AXISCLASSPATH:. MyMathClient localhost 4

The argument localhost tells the client the IP address of the server.

You should get the following output:

The square of 4 is 16

Step 8 – Add Functionality to the Web Service Program

In this step you are to extend the service by adding the following two methods. You also must extend the client to test the new methods.

· The method named isPrime returns a Boolean object with the value of true if and only if the integer argument passed to it is a prime number. (For more information about prime numbers, please visit http://mathworld.wolfram.com/PrimeNumber.html.)

· The method named isEven that returns a Boolean object with the value of true if and only if the integer argument passed to it is even. (http://mathworld.wolfram.com/EvenNumber.html)

To do this, the basic idea is to repeat the first six steps above but adding in the extra code in the 'MyMath.jws' and 'MyMathClient.java' files. All the steps are to be done while you are in the directory WebServices.

Appendix A: Additional Resources

Apache web services Project: http://ws.apache.org/
Apache Axis: http://ws.apache.org/axis
Apache ANT: http://ant.apache.org
Apache Tomcat: http://jakarta.apache.org
Web Service Description Language: http://www.w3.org/TR/wsdl
On To Java – Axis web services: http://www.onjava.com/lpt/a/1578
� http://ws.apache.org/axis/java/user-guide.html#Java2WSDLBuildingWSDLFromJava

1 of 8

