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One-Dimensional DOSY
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A new NMR experiment for correlating diffusion coefficients and
chemical shifts is presented. This experiment provides the same in-
formation as the conventional DOSY experiment, but only requires
a single dimension because a nonuniform magnetic field gradient is
used to encode the diffusion information into the lineshapes of the
peaks in the chemical shift dimension. By fitting the resulting line-
shapes, the diffusion coefficient for each peak in the spectrum can
be extracted. Using this experiment, a qualitative DOSY spectrum
can be generated using the results from a single one-dimensional
experiment. Quantitative results can be determined with the use of
reference experiments. C© 2001 Academic Press

Key Words: NMR; diffusion; DOSY; gradient; one-dimensional.

m
m

d

n

S
e

f
h
ie
o
i

ing;
of

ion

ire
are
for
ve
i-
y

ple.
sur-

ing
the

nt
ri-
ur-
nal
in

-
MR
o-

ions
be

ng
er-
her-
tly,

hich
re-
the
INTRODUCTION

In this paper, we describe a new NMR experiment that, fro
single one-dimensional experiment, provides the same infor
tion as diffusion-ordered spectroscopy (DOSY) (1, 2). In con-
ventional DOSY experiments, the diffusion coefficient is me
sured by acquiring a series of one-dimensional spectra with
ferent amounts of diffusion weighting. The diffusion coefficien
are found by fitting the variations in the intensities of the pea
between the spectra. This information is then used to gene
a two-dimensional representation of the data with the estima
diffusion coefficient along one axis and the chemical shift alo
the other. In our technique, both the diffusion coefficientsandthe
chemical shifts are measured simultaneously in a single dim
sion; we therefore call our experiment one-dimensional DO
It is also possible to generate a two-dimensional DOSY sp
trum from the data acquired in our experiment.

In the one-dimensional DOSY experiment, the effects of d
fusion are encoded into the lineshape of each peak in the dire
acquired dimension. This is done in two parts. First, the dif
sion weighting of the signal is made spatially dependent. T
is accomplished by using a nonuniform gradient (i.e., a grad
that causes a nonlinear variation of the magnetic field). Sec
the peaks are broadened during acquisition so that their l
1 To whom correspondence should be addressed. Currently at the Ce
for Magnetic Resonance at MIT, 150 Albany Street, Cambridge, MA 0213
Fax: (617) 253-5405. E-mail: NikoLoening@alumni.hmc.edu.
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shapes reflect the spatial dependence of the diffusion weight
this is accomplished by acquiring the signal in the presence
a weak read gradient. It is then possible to extract the diffus
coefficients by fitting the shape of each peak.

The advantage of this technique is that it does not requ
recording a series of diffusion-weighted spectra; the results
available after a single experiment. Although other methods
measuring the diffusion coefficient in a single experiment ha
been proposed (3–7), these methods do not allow the discrim
nation of signals with different chemical shifts. Therefore, the
are of no use if there is more than a single peak in the sam
Although another experiment has been suggested for mea
ing diffusion coefficients using a nonuniform gradient (8), the
experiment was in the context of magnetic resonance imag
and does not retain the chemical shift. Our method preserves
chemical shift; this allows estimates of the diffusion coefficie
to be made forall the peaks in the spectrum in a single expe
ment. The use of a very weak gradient to broaden the lines d
ing acquisition does, however, mean that the one-dimensio
DOSY experiment sacrifices some chemical shift resolution
exchange for information about the diffusion coefficient.

In the following, we will show that a qualitative DOSY spec
trum can be constructed based on a single one-dimensional N
experiment. To make quantitative estimates of the diffusion c
efficients, some instrument- and sample-dependent calibrat
are required in which case more than one experiment may
necessary.

THEORY

In NMR, diffusion measurements are usually made usi
magnetic-field gradient pulses. A gradient pulse labels coh
ences with a phase that corresponds to the position and co
ence order of the individual spins in the sample. Subsequen
this phase label can be removed by another gradient pulse, w
is usually referred to as a refocusing gradient. If the spins
main stationary during the time between the gradient pulses,
intensity and phase of the NMR signal after the second gradi
will be independent of the strength and length of the gra
ent pulses; the phase label is removed completely. Howeve
the spins move between the phase labeling and the refocu
1090-7807/01 $35.00
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gradients, the intensity and/or phase of the signal will be
fected. For example, molecular motion due to isotropic dif
sion results in an attenuation of the signal, and it is this eff
that is used to measure diffusion coefficients. A semi-class
treatment based on the Bloch equations can be used to pr
the effects of diffusion (9–11).

The Bloch equation for the evolution of transverse magn
zation in a frame of reference rotating at the Larmor frequenc

d M+(t)

dt
= −M+(t)

T2
, [1]

whereT2 is the transverse relaxation time and

M+(t) ≡ Mx(t)+ i My(t).

Mx(t) and My(t) are thex and y components of the magne
tization, respectively. This equation applies for the case o
homogenous magnetic field oriented along thez axis and in the
absence of radiofrequency pulses.

In the presence of an inhomogeneous magnetic field (i.e
gradient pulse), [1] needs to be modified to (9)

∂M+(z, t)

∂t
=−M+(z, t)

T2
− i γ B(z, t)M+(z, t)+ D

∂2

∂z2
M+(z, t),

[2]

whereγ is the magnetogyric ratio,B(z, t) is the contribution
to the magnetic field at positionz due to the gradient, and
D is the diffusion coefficient. Here we deal with the on
dimensional case in which the only variation of the magne
field is along thez axis; the solution for the three-dimension
case is treated in the Appendix. The first of the additio
terms in [2] accounts for the change in the Larmor freque
due to B(z, t). This deviation results in a spatially depende
phase. The second additional term accounts for the movem
of the magnetization due to isotropic diffusion; this term
analogous to Fick’s second law. Note that it is assumed
the gradient pulse only causes variations in themagnitudeof
the main magnetic field; thedirection of the magnetic field is
unaffected.

The dependence of the signal on changes in coherence o
during the experiment (i.e., the effect of radiofrequency puls
can be incorporated into the modified Bloch equation by rep
ing B(z, t), with an effectivemagnetic field gradient,B∗(z, t)
(11),

B∗(z, t) ≡ p(t)B(z, t),
wherep(t) is the coherence order at timet . In the discussion that
follows, the coherence order is either+1 or−1 so the relaxation
rate remains the same.
R, AND MORRIS
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In the absence of diffusion (D = 0), the solution to [2] is

M+(z, t) = exp

[
−i γ

∫ t

0
B∗(z, t ′) dt′

]
exp

(
− t

T2

)
, [3]

where, for simplicity, we have assumed thatM+(z, 0) = 1. For
an appreciable amount of signal to be observable at the end
pulse sequence, the gradient phase label needs to be refoc
This means that the phase should be independent of positio
therefore follows that the refocusing condition is

∫ t

0
B∗(z, t ′) dt′ = b,

whereb is a constant whose value is independent of position
is usually the case thatb = 0, a situation that we will assume
from now on.

In the presence of diffusion, a trial solution for [2] can b
constructed from [3] by adding an additional term,A(z, t), which
reflects the attenuation of the signal due to diffusion:

M+(z, t) = A(z, t) exp

[
−i γ

∫ t

0
B∗(z, t ′) dt′

]
exp

(
− t

T2

)
.

After substituting this trial solution into [2] (withB(z, t) =
B∗(z, t)) and cancelling common terms, it is seen that

∂A(z, t)

∂t
= −Dγ 2A(z, t)

[∫ t

0

∂

∂z
B∗(z, t ′) dt′

]2

− 2Di γ
∂

∂z
A(z, t)

[∫ t

0

∂

∂z
B∗(z, t ′) dt′

]
−Di γ A(z, t)

[∫ t

0

∂2

∂z2
B∗(z, t ′) dt′

]
+ D

∂2

∂z2
A(z, t).

[4]

A conventional magnetic field gradient generates a magn
field that varies linearly with distance. That is, the gradient
the effective magnetic field is spatially uniform:

∂

∂z
B∗(z, t) = G∗(t).

It follows that the amount by which the signal is attenuat
will also be uniform across the sample. This means thatG∗(t)
and A(z, t) are independentof z and therefore∂

∂z A(z, t) and
∂2

∂z2 B∗(z, t) are zero. Consequently, the last three terms on

right-hand side of [4] vanish.

For the one-dimensional DOSY experiment, we want to solve
the more general case in which the gradient is dependent on
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position:

∂

∂z
B∗(z, t) = G∗(z, t).

In this case, the last three terms of [4] are nonzero. Howe
we will still discard these terms because, for realistic value
γ , B∗(z, t), andt , these terms will be negligible in compariso
to the first term. Physically what this means is that, over
distance that an individual spin will move during the experime
the magnetic field gradient can be approximated to be unifo
Therefore [4] becomes

∂A(z, t)

∂t
= −Dγ 2A(z, t)

[∫ t

0

∂

∂z
B∗(z, t ′) dt′

]2

= −Dγ 2A(z, t)

[∫ t

0
G∗(z, t ′) dt′

]2

,

which has the solution

A(z, t) = exp

(
−Dγ 2

∫ t

0

[ ∫ t ′

0
G∗(z, t ′′) dt′′

]2

dt′
)
. [5]

As all the terms in the exponent of [5] are real, this result pred
that diffusion will only attenuate the signal; the signal does
change in sign or phase.

For a specific pulse sequence it is possible to use [5
calculate the diffusion-dependent signal attenuation. For
pulsed gradient spin-echo (PGSE) experiment shown in Fi
the integral in [5] can be split into three sections correspo
ing to the first gradient pulse (t = 0→ δ), the time between
the gradient pulses (t = δ→1), and the final gradient puls
(t =1→1+ δ). Before the first gradient and after the seco
gradient the magnetization does not have a spatially depen
phase label, and therefore these periods do not contribu
A(z, t).

FIG. 1. The PGSE experiment. Solid rectangles representπ
2 pulses, open
rectangles representπ pulses,δ is the length of the gradient pulses, and1 is
the time from the beginning of the first gradient to the beginning of the seco
gradient.G(z, t), G∗(z, t), andp(t) are as defined in the text.
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For the pulse sequence shown in Fig. 1, the exponent in
evaluates to∫ t

0

[ ∫ t ′

0
G∗(z, t ′′) dt′′

]2

dt′

=
∫ δ

0
[g(z)t ′]2 dt′ +

∫ 1

δ

[g(z)δ]2 dt′

+
∫ 1+δ

1

[g(z)δ − g(z)(t ′ −1)]2 dt′

= 1

3
g(z)2δ3+ g(z)2δ2 (1− δ)+ 1

3
g(z)2δ3

= g(z)2δ2

(
1− 1

3
δ

)
,

whereg(z) indicates the strength of the gradient at positionz.
This result leads to the attenuation function

A(z,1+ δ) = exp

[
−Dγ 2g(z)2δ2

(
1− 1

3
δ

)]
. [6]

As G∗(z, t) is the same for PGSE and stimulated-echo (ST
experiments, the preceding result applies in both cases as
as the timing of the gradient pulses is the same.

To proceed any further, it is necessary to assume a form
B(z). If we assume thatB(z) can be represented by a sum o
polynomials, then

B(z) =
N∑

n=1

gnzn,

whereN is the maximum order of term needed to describe t
magnetic field andgn is the coefficient corresponding to the
nth-order term. The gradient of the magnetic field is

G(z) = d

dz
B(z) =

N∑
n=1

ngnzn−1.

For conventional gradients (i.e., those that generate a linear v
ation in the magnetic field and therefore a uniform gradient), t
sum contains a single term corresponding ton = 1, and therefore
[6] leads to the familiar result:

A(1+ δ) = exp

[
−Dγ 2g2

1δ
2

(
1− 1

3
δ

)]
.

As described above, for the case where the gradient of the m
netic field is constant, the attenuation is independent of posit
in the sample. Why this is so is illustrated by the solid line
Fig. 2; moving a certain distance causes a spin to experie
the same change in magnetic field regardless of its starting
ndsition. Thus, the amount by which the signal is attenuated due
to diffusion is the same in all parts of the sample.
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FIG. 2. The magnetic field due toz andz2 gradients; az gradient (solid
line) causes the magnetic field to vary linearly, whereas az2 gradient (dashed
line) causes it to vary quadratically. Movement of a spin froma to a′ or fromb
to b′ in the presence of az gradient results in the same change in field regardl
of the starting position as indicated by the thick arrows. For az2 gradient the
change in field caused by moving froma to a′ is much less than for moving
from b to b′ as indicated by the thin arrows; the change in field depends on
starting position.

A gradient that causes a nonlinear variation in the magn
field will cause the diffusion-dependent signal loss to be differ
in different parts of the sample. The dashed line in Fig. 2 sho
the field profile for a gradient that generates a quadratic varia
of the magnetic field. This means that, for a spin moving a cer
distance, the change in the magnetic field that it experiences
depend on its initial position. The change in the field will
greater if the molecule is at the extremes of the sample than
is in the middle and, as a result, the amount by which the sig
is attenuated due to diffusion will vary across the sample.
shall call a gradient that causes a quadratic (n = 2) variation in
the magnetic field az2 gradient.

Although any nonuniform gradient can be used for the o
dimensional DOSY experiment, in practice, higher-order (n >
2) gradients are more useful for situations where the diffus
coefficients span a wide range, whereas lower-order gradi
are better able to resolve small differences in diffusion coe
cients. For practical reasons, we choose to usez2 gradients in
our experiments; in this case [6] becomes

A(z,1+ δ) = exp

[
−4Dγ 2g2

2δ
2z2

(
1− 1

3
δ

)]
. [7]

The spatial dependence of the signal attenuation due to thz2

gradient will not usually be visible, as the net signal from t
entire sample is observed in an NMR experiment.

However, the spatial dependence of the signal attenua
predicted in [7] can be determined by using imaging te

niques. After diffusion weighting by a nonuniform gradient,
one-dimensional image (profile) of the sample will reflect n
R, AND MORRIS

ss

the

tic
nt
ws
ion
in

will
e
if it
nal

e

e-

on
nts
fi-

e

ion

only the spin density but also the spatially dependent diffus
weighting. If the spin density of an NMR sample is consta
along thez axis, the resulting profile will simply reflect the at
tenuation due to diffusion. In the case of az2 gradient, the profile
will consist of a Gaussian, centered at the chemical shift, wit
width proportional to the diffusion coefficient.

In most imaging experiments it is desirable for the broa
ening of the signal due to the imaging gradient to domina
the chemical shift. If this is not the case, what will be o
served is a superposition of images that are offset from o
another due to the chemical shift. Such a superposition le
to a loss of resolution and to difficulties in interpreting the im
age. In contrast, in the one-dimensional DOSY experiment
extremely weak imaging gradient is used, allowing the chem
cal shift to dominate the gradient. This means that each pea
the spectrum will result in an independent profile of the sa
ple that is resolved from the other peaks by the chemical sh
In this way, it is possible to record the sample profile, whi
reflects the diffusion coefficient, while retaining chemical sh
dispersion.

Due to the use of a weak imaging gradient, contributions to
lineshape of the peak other than the diffusion attenuation can
be ignored; the influence of other parameters on the linesha
and consequently on the accuracy of the estimated diffus
coefficients, will be explored later in this paper.

EXPERIMENTAL

All spectra were acquired on a Varian Unity Inova 400 MH
spectrometer. The sample consisted of cyclohexane, acet
and 1,1,2,2-tetrachloroethane in deuterated acetone; the s
ple temperature was maintained at 295 K during the exp
ments. For reference, the diffusion coefficients were measu
using a conventional stimulated-echo experiment; these res
are shown in Table 1.

The z2 Gradient

The z2 gradient was generated using thez2 shim: the shim
control board was modified so that an additional current co
be added to that set by the shim controls, and switched
and off using a spare control line from the pulse programm
To calibrate the strength of thez2 gradient, the magnetic field
mapping experiment shown in Fig. 3 was used; this experim

TABLE 1
The Apparent Diffusion Coefficients Measured Using a Stimu-
lated-Echo Experiment for the Solutes in Deuterated Acetone

MW Da

Molecule (g mol−1) (10−5 cm2 s−1)

Acetone 58.1 3.69 (±0.02)
a
ot

1,1,2,2-Tetrachloroethane 167.9 2.36 (±0.01)

a The errors given are the standard errors estimated by the fitting procedure.
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FIG. 3. The pulse sequence used for mapping the magnetic field.τa is the
acquisition time,τp is varied to map the field,Gz denotes conventional gradie
pulses, andGz2 denotesz2-gradient pulses.

is simply a one-dimensional Fourier imaging sequence w
the addition of a small delay,τp, immediately after the firs
radiofrequency pulse of the sequence (12). If two experiments
are performed with different values ofτp, then the difference in
phase at each point in the resulting profiles reflects the valu
the magnetic field at the corresponding position in the sam

The image that results from a field mapping experim
with the z2 gradient switched on is shown in Fig. 4, and t
corresponding field map is shown in Fig. 5a. The inhomogen
in the main magnetic field was determined by performing
field mapping experiment without thez2 gradient. The resulting
field map, shown in Fig. 5b, demonstrates that the variatio
the main magnetic field along thez axis is at least three orde
of magnitude smaller than the variation due to thez2 gradient.

The shim coil used for thez2 gradient did not produce a pure
quadratic field profile. Therefore, the field map shown in Fig
was fitted with a polynomial:

B(z) =
N∑

n=0

gnzn. [8]

The results of fitting the field map to a second-order polynom
(N = 2) and a fourth-order polynomial (N = 4) are shown in
Table 2. An attempt to interpret the one-dimensional DO
spectra assuming that the gradient was described by on
second-order term,g2 (which corresponds to fitting the peaks

FIG. 4. Phase-sensitive profiles measured using the field mapping p

sequence shown in Fig. 3. The profiles shown using a solid line and a da
line are from experiments withτp = 0 andτp = 5 ms, respectively. The sample
used to map the field was a 1% solution of H2O in D2O.
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TABLE 2
Results of Fitting the z2-Gradient Field Map to [8]

Coefficient (units) N = 2a N = 4a

g0 (mG) 2 (±1) −3 (±1)
g1 (mG cm−1) −80 (±1) −60 (±1)
g2 (mG cm−2) −436 (±3) −360 (±1)
g3 (mG cm−3) −61 (±1)
g4 (mG cm−4) −154 (±2)

a The errors given are the standard errors estimated by the fitting proced

the spectrum using [7]), resulted in inaccurate estimates of
diffusion coefficients. Therefore, the fourth-order polynom
given in Table 2 was used to fit the one-dimensional DO
spectra; this produced more accurate results.

The use of a shim coil to generate thez2 gradient resulted
in several difficulties. First, the maximum attainable gradie
strength is much less than that offered by a conventional gr
ent coil. Therefore, in the one-dimensional DOSY experimen
spin echo rather than a stimulated echo was used so that the
imum amount of diffusion weighting could be achieved. Seco
the lack of active shielding for thez2 shim resulted inz2-gradient
pulses causing large and long-lived disturbances of the ho
geneity of the main magnetic field during experiments. In
attempt to minimize these effects several methods were tried
cluding pulsing thez0 shim simultaneously with thez2 gradient
and switching on az2 gradient of opposite polarity immediatel
before the sequence. Unfortunately, the effects that stem f
a z2-gradient pulse are complex and take place on several t
scales. As we were unable to compensate for all these effects
resorted to using a longitudinal eddy delay (LED) between
spin echo and signal acquisition to allow the system to settl

Pulse Sequence

The pulse sequence for the one-dimensional DOSY exp
ment incorporating a LED is shown in Fig. 6a. The sequen
consists of a spin echo with diffusion weighting by az2 gradient
followed by a LED. Az gradient is used both as a homospo
during the LED and to image the sample. As thez2 gradient
is not powerful enough to ensure that the required cohere
transfer pathway is selected by the spin echo,z-gradient pulses
were placed on either side of theπ pulse to restrict the coherenc
transfer pathway. The sequence shown in Fig. 6b is a refere
experiment which, as will be explained below, is needed
quantifying the results of the one-dimensional DOSY expe
ment.

In both pulse sequences, the length of thez2-gradient pulse
(τon) is identical; the same is true of the time between switch
thez2 gradient off and acquiring the data (τoff ). This ensures that
any effects due to disturbances of the main magnetic field
identical in the two experiments. As will be seen later, it is al
shed
important that the spin-echo time (τd) should remain the same
in the two sequences.
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FIG. 5. (a) Maps of the magnetic field variation for thez2 gradient (solid li

In both sequences, the phases of all the pulses were the
except for the secondπ2 pulse. The use of an unshieldedz2 gra-
dient resulted in a fluctuation of the main magnetic field dur
the experiment and, as a result, the spin echo did not refo
the magnetization along the expected axis. This effect was c
pensated for by empirical adjustments of the phase of thπ2
pulse at the end of the spin echo so as to maximize the si
intensity.

For both the diffusion-weighted and the reference exp
ments, the spin-echo time (τd) was 0.174 s,τon was 0.5 s, and
τoff was 2 s.τstorewas equal toτoff in the diffusion-weighted ex-
periment and set to 0.5 s in the reference experiment. The
long value needed forτoff was a result of the effects caused b
unshieldedz2 gradients. All gradients had a rectangular sha
The coherence selection gradients flanking theπ -pulse were
2 ms long and had a strength of 10 G cm−1. The homospoil
FIG. 6. The pulse sequences for (a) the one-dimensional DOSY experim
and (b) the reference experiment. The various delay times are explained in
text.
e) and the main field (dashed line). (b) Expansion of the main magnetic field
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gradient pulse was 10 ms long and had a strength of 30 G cm−1.
The strength of the read gradient was 4.9 mG cm−1.

RESULTS

Spectra acquired using the one-dimensional DOSY seque
and the reference experiment are shown in Fig. 7. To interp
these spectra, the spatially dependent diffusion weighting of
signal must be derived from [6]. As thez2 gradient remains on
throughout the experiment,1 = δ = 1

2τd and therefore from
[6] we have

A(z) = exp

[
− 1

12
Dγ 2G2τ 3

d

]
, [9]

where

G = g1+ 2g2z+ 3g3z2+ 4g4z3.

The values of the coefficientsg1− g4 are given in Table 2. In
the presence of a conventional read gradient (Gz), the position
along thez axis is related to the frequency,ν, according to

z= 2π (ν − ν0)

γGz
,

whereν0 is the center frequency of the peak. Therefore, t
signal intensity as a function of frequency for a single peak i

S(ν) = S0A(ν)

= S0 exp

[
− 1

12
Dγ 2

(
g1+ g2

4π (ν − ν0)

γGz

+ g3
12π2(ν − ν0)2

γ 2G2
z

+ g4
32π3(ν − ν0)3

γ 3G3
z

)2

τ 3
d

]
, [10]
ent
thewhereS0 is the overall peak height. It should be noted that many
of the cross terms that will result from squaringG are significant
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FIG. 7. (a) One-dimensional DOSY and (b) reference spectra for a mi
“horns” visible in the reference spectrum are due to nonuniformity of the r

and cannot be neglected in the data analysis. To estimat
diffusion coefficients using the one-dimensional DOSY sp
tra, a nonlinear least-squares method was used to fit each

Although there are several terms in [10], there are only three

al DOSY

ri-
en-
als
justable parameters: the peak amplitude (S0), the peak position
(ν0), and the diffusion coefficient (D).

FIG. 8. DOSY spectra constructed using data from (a) a conventional (stimulated-echo) two-dimensional DOSY experiment and (b) a one-dimension
experiment. The diffusion coefficients given in Table 1 are shown as dotted lines across (b); these values were used to construct (a). For the conventional DOSY
spectrum, the intensities of the peaks correspond to the first increment of the DOSY experiment. For the one-dimensional DOSY spectrum, the intensities correspond

ment clearly do not agree with those determined using a conv
tional stimulated-echo experiment, the separation of the sign
to the one-dimensional spectrum shown in Fig. 7a. In the diffusion dimensio
the fitting procedure and with widths corresponding to the standard deviatio
of the maximum intensity of the spectrum.
ure of 1,1,2,2-tetrachloroethane, cyclohexane, and acetone in deuterated ae
d gradient.

the
c-
eak.
ad-

After fitting each peak to determine the corresponding diff
sion coefficient, it is possible to construct a conventional DOS
spectrum, such as is shown in Fig. 8a. Although the diffusi
coefficients estimated from the one-dimensional DOSY expe
n, both spectra consist of Gaussians centered at the diffusion coefficientestimated by
ns of the fits. For both spectra, the contour lines correspond to 1, 2, 5, 10,20, and 50%
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neglect the effect of the instrumental lineshape.
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based on their diffusion coefficients (which is the goal of DOS
is successful; the values are in the correct order. The differe
in the linewidths in the chemical shift dimension between
DOSY spectra is due to the additional broadening necessa
the one-dimensional DOSY experiment to extract the diffus
information. This illustrates the point that to gain informatio
about the diffusion coefficient in a one-dimensional experime
some resolution must be sacrificed.

As described so far, the analysis of the one-dimensio
DOSY experiment assumes that the only factor that influen
the image profile (and therefore, the estimate of the diffus
coefficient) is the diffusion weighting. However, this is only a
approximation; other factors that influence the sample pro
include thez-axis dependence of the read gradient and of
radiofrequency field.

The first and most important factor that needs to be taken
account is the variation of the radiofrequency field, which d
termines the signal strength measured along thez axis. If the
signal strength is not uniform over the entire sample, then
will be reflected in the shape of the profile. This effect can
removed by dividing each peak in the diffusion-weighted sp
trum by a reference profile. In theory, this reference profile o
needs to be acquired once for any given spectrometer; if a p
nomial is used to fit the profile then the resulting equation can
scaled according to the size of the read gradient. In practice
use the reference experiment described in the previous secti
generate the required reference profile. To avoid difficulties s
as division by zero, a minimum threshold based on the refere
spectrum was used. If the intensity for a point in the refere
spectrum was below the threshold value, then the correspon
point in the diffusion-weighted spectrum was ignored.
Another important instrumental factor is spatial variations of

g by the

ted
lly
the gradient used to image the sample. This will stretch or com-
press the image, resulting in variations in the apparent signal

FIG. 9. DOSY spectra constructed from the spectrum shown in Fig. 7a (a) dividing by the reference spectrum shown in Fig. 7b and (b) after dividin

As shown in Fig. 9a, the accuracy of DOSY spectra genera
from the one-dimensional DOSY results is substantia
reference spectrumanddeconvoluting the peaks by their natural lineshapes. T
Both spectra were constructed in the same manner as those of Fig. 8b.
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intensity. Fortunately, the sensitivity profile generated from t
reference image suffers from the same systematic error; di
ing the one-dimensional DOSY spectrum by a reference im
cancels the systematic error.

To preserve the chemical shift resolution we are forced to
a very weak read gradient, corresponding to a broadening
the lines by about 30 Hz. Therefore, the underlying linewid
of the peaks in the conventional spectrum can be sufficien
affect the profile. Attention also needs to be paid, therefore
the effects of the underlying linewidths.

The profile of a peak in the one-dimensional DOSY spe
trum is a convolution of the natural linewidth and the diffusio
weighted profile. This convolution broadens the peak profile a
consequently lowers the estimate of the diffusion coefficient.
remove this effect, the spectrum needs to be deconvoluted
the natural lineshape. As convolution in the frequency dom
is the same as multiplication in the time domain, the easiest w
to deconvolute the spectrum is to divide the FID by a decay
exponential function that has a decay constant equal toT2.

The effect of the instrumental lineshape is more complicat
Although in many experiments the instrumental lineshape
be removed using reference deconvolution (13), in the case of the
one-dimensional DOSY experiment reference deconvolutio
not appropriate as the spectrum is not a simple convolution of
instrumental lineshape and the sample image. The compon
of the instrumental lineshape due to inhomogeneities along
transverseaxes will result in a convolution that may be differen
for different points along thez axis. Inhomogeneitiesalongthe
z axis will contribute to the magnetic field generated by the re
gradient. However, as was seen in Fig. 5, the magnetic field
very homogeneous, at least along thez axis, and we therefore
he diffusion coefficients given in Table 1 are shown as dotted lines across the spectra.
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ONE-DIMENS

improved by dividing the experimental data by the refere
spectrum shown in Fig. 7b. The accuracy is further improved
deconvoluting the peaks according to their natural linewid
these results are shown in Fig. 9b.

Another effect that influences the profiles of the peaks is sc
coupling. If the couplings for a peak are much larger than
broadening due to the read gradient, then the individual l
of the multiplet can be independently analyzed. If the oppo
is true, then the effect of coupling can be ignored. In the
termediate case, where the broadening of the peak due t
read gradient and the coupling are of similar size, the pea
the spectrum will consist of several overlapping images. T
situation can be dealt with either by fitting the peak to a s
of equations with the form of [10] or by using reference d
convolution to remove the effect of the scalar couplings on
spectrum (13) before fitting the peak profiles. In practice, the n
cessity of using a relatively lengthy spin-echo period to ach
a sufficient degree of diffusion weighting limits our experime
to the analysis of singlets; couplings result in the evolution
antiphase coherences during the spin-echo period that mak
spectrum difficult to interpret. A more powerfulz2 gradient,
which would allow the use of a stimulated echo for the d
fusion weighting instead of a spin echo, would alleviate t
problem.

CONCLUSION

One-dimensional DOSY provides the same information
a conventional DOSY experiment, but in a fraction of the
periment time. With a single experiment, it is possible to
termine a rough estimate of the diffusion coefficient; if qu
titative results are not needed, this is all that is required
construct a DOSY spectrum. Improved estimates of the
fusion coefficients can be obtained by further data proc
ing using a reference experiment and by deconvoluting
spectrum.

APPENDIX

For the general case of a three-dimensional gradient, [1] n
to be modified to

∂M+(r , t)
∂t

= −M+(r , t)
T2

− i γ B(r , t)M+(r , t)

+ D∇2M+(r , t), [A.1]

whereB(r , t) is the contribution to the magnetic field at positi
r due to the gradient. Defining the effective gradient as
B∗(r , t) ≡ p(t)B(r , t),
IONAL DOSY 111
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the solution for [A.1] is then

M+(r , t) = A(r , t) exp

[
−i γ

∫ t

0
B∗(r , t ′) dt′

]
exp

(
− t

T2

)
,

[A.2]

where A(r , t) reflects the attenuation of the signal due to dif
sion.

After substituting [A.2] into [A.1] (withB(r , t) = B∗(r , t))
and cancelling common terms, it is seen that

∂A(r , t)
∂t

= −Dγ 2A(r , t)

∥∥∥∥∫ t

0
∇B∗(r , t ′) dt′

∥∥∥∥2

− 2Di γ∇A(r , t) ·
[∫ t

0
∇B∗(r , t ′) dt′

]
− Di γ A(r , t)

[∫ t

0
∇2B∗(r , t ′) dt′

]
+ D∇2A(r , t). [A.3]

As in the one-dimensional case, the last three terms of [A
vanish for a conventional (uniform) gradient and are negligi
for nonuniform gradients. Consequently, using the definition

∇B∗(r , t) = G∗(r , t),

[A.3] becomes

∂A(r , t)
∂t

= −Dγ 2A(r , t)

∥∥∥∥∫ t

0
G∗(r , t ′) dt′

∥∥∥∥2

,

which has the solution

A(r , t) = exp

(
−Dγ 2

∫ t

0

∥∥∥∥ ∫ t ′

0
G∗(r , t ′′) dt′′

∥∥∥∥2

dt′
)
. [A.4]

As all the terms in the exponent of [A.4] are real, this res
again predicts that diffusion will only attenuate the signal;
signal does not change in sign or phase. Additionally, [A
shows that, as would be expected, gradients along orthog
axes contribute independently to the signal attenuation.

For the pulse sequence shown in Fig. 1, [A.4] leads to
attenuation function

A(r ,1+ δ) = exp

[
−Dγ 2 ‖g(r )‖2 δ2

(
1− 1

3
δ

)]
, [A.5]
whereg(r ) indicates the strength of the gradient at positionr .
As G∗(r , t) is the same for PGSE and STE experiments, the
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preceding result applies in both cases as long as the timin
the gradient pulses is the same.
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