Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy

Nikolaus M. Loening,1* Anne M. Chamberlin,1 Andrea G. Zepeda,2 R. Gilberto Gonzalez3, and Leo L. Cheng2,3

1Department of Chemistry, Lewis & Clark College, 0615 SW Palatine Hill Road, Portland, OR 97219, USA
2Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
3Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA

Received 8 December 2003; Revised 15 March 2004, 9 July 2004, 5 April 2005; Accepted 26 May 2005

ABSTRACT: Choline and the related compounds phosphocholine (PC) and glycerophosphocholine (GPC) are considered to be important metabolites in oncology. Past studies have demonstrated correlations linking the relative ratios and concentrations of these metabolites with the development and progression of cancer. Currently, in vivo and tissue ex vivo magnetic resonance spectroscopy methods have mostly centered on measuring the total concentration of these metabolites and have difficulty in differentiating between them. Here, a new scheme that uses 31P edited 1H spectroscopy to quantify the concentrations of choline, PC and GPC in biological samples is reported and its applicability is demonstrated using samples of human brain tumor extracts. This method is particularly well-suited for analytical situations where the PC and GPC resonances are not sufficiently resolved and/or are obscured by other metabolites. Consequently, this scheme has the potential to be used for the analysis of choline compounds in ex vivo tissue samples. Copyright © 2005 John Wiley & Sons, Ltd.

KEYWORDS: 31P edited 1H NMR; INEPT; choline compounds; human brain tumor extracts

INTRODUCTION

Choline and the related compounds phosphocholine (PC) and glycerophosphocholine (GPC) are essential nutrients that function as substrates in many major bio-metabolic pathways. These choline-compounds participate in a number of biological processes ranging from the normal development of the brain and liver in infants1 to various pathological conditions such as the progression of neoplasms.2 Although the biochemical functions of these compounds have been studied for decades, their unique importance has only come to light over the past 20 years with the application of NMR spectroscopy to medical science.

The relationship between the concentrations of choline-compounds and pathology has been measured and documented for many medical conditions, such as HIV infections,3 traumatic brain injuries,4 schizophrenia,5 neuro-degenerative6 and neuro-genetic7 disorders, chronic fatigue8 and multiple sclerosis,9 as well as for the processes of normal development10 and aging.11 However, one of the most studied connections has been with cancer.12–18 In general, the concentrations of choline-compounds are elevated in cancer and, more importantly, ex vivo studies of tissue extract samples suggest that the ratio of the phosphoryl derivatives indicates the status of the disease.19–21 The signals of the methyl [–N(CH$_3$)$_3$] protons has been used to differentiate choline (3.185 ppm) from PC (3.208 ppm) and GPC (3.212 ppm) in ex vivo analyses.22 Unfortunately, present NMR-based in vivo techniques cannot differentiate the methyl protons of choline from those of PC and GPC as their signals are separated by less than 0.03 ppm. For ex vivo samples of intact tissue the methyl protons of choline can be differentiated from those of the other choline compounds using high-resolution magic angle spinning proton NMR spectroscopy. Differentiating between the methyl protons of PC and GPC is a great challenge because of their very small chemical shift separation (0.007 ppm, see Results section).23,24 Therefore, even at moderate field strengths (e.g. 300 MHz), the resonances are difficult to resolve. This means that it is currently almost impossible to quantify these metabolites simultaneously in vivo. Although ex vivo quantification of all three compounds...
is possible using the methyl proton signals, it is difficult and requires techniques such as post-processing peak deconvolution or two-dimensional spectroscopy. Here, we introduce a scheme that can efficiently differentiate and quantify PC and GPC, and we demonstrate its applicability to both model compounds and extracts of human brain tissue. The crux of this method is the use of phosphorous \(^{31}\)P edited proton \(^{1}\)H NMR spectroscopy to measure signals from the \(^{1}\)CH\(_2\) protons of PC and GPC. These protons have a spectral separation that is about 20 times greater than that between the methyl protons (0.13 vs 0.007 ppm). The \(^{31}\)P editing is accomplished using the scalar couplings between the \(^{1}\)CH\(_2\) and \(^{2}\)CH\(_2\) protons during the transfers.

Here, we introduce a scheme that can efficiently differentiate and quantify PC and GPC, and we demonstrate its applicability to both model compounds and extracts of human brain tissue. The crux of this method is the use of phosphorous \(^{31}\)P edited proton \(^{1}\)H NMR spectroscopy to measure signals from the \(^{1}\)CH\(_2\) protons of PC and GPC. These protons have a spectral separation that is about 20 times greater than that between the methyl protons (0.13 vs 0.007 ppm). The \(^{31}\)P editing is accomplished using the scalar couplings between the \(^{31}\)P nucleus and the \(^{1}\)CH\(_2\) protons in PC and GPC. Although the sensitivity of this technique suffers compared with the direct analysis of the methyl protons, the better resolution of the \(^{1}\)CH\(_2\) protons allows for analysis in situations where the individual methyl proton resonances from the three choline compounds are not sufficiently resolved. Consequently, we believe this approach may be helpful in the future for ex vivo analyses of intact tissue samples and, if sensitivity issues can be resolved, has the potential to be incorporated into in vivo examinations.

EXPERIMENTAL

The experiments were carried out using vertical standard-bore Bruker Avance NMR spectrometers. The standard samples were studied using a 300 MHz (7.05 T) system equipped with a Bruker broadband inverse-geometry z-axis gradient probe. The brain tissue extract samples were studied using a 600 MHz (14.1 T) system equipped with a Bruker \(^{31}\)P/\(^{13}\)C/\(^{15}\)N–\(^{1}\)H inverse-geometry z-axis gradient probe. The pulse sequence developed for the experiment is shown in Fig. 2. It consists of two INEPT steps\(^{29}\) that transfer the initial \(^{1}\)H magnetization to \(^{31}\)P and then back to \(^{1}\)H. Inserted into these INEPT steps are selective \(180^\circ\) pulses that only affect the \(^{2}\)CH\(_2\) protons and, consequently, refocus the homonuclear scalar couplings between the \(^{1}\)CH\(_2\) and \(^{2}\)CH\(_2\) protons. These selective pulses are essential because the \(^{1}\)H–\(^{1}\)H couplings are similar in size to the \(^{31}\)P–\(^{1}\)H couplings. Without the selective pulses the effect of the \(^{1}\)H–\(^{1}\)H couplings during the INEPT delays would be to transform the single quantum coherences arising from the \(^{1}\)CH\(_2\) protons into multiple quantum coherences. Pulsed field gradients are used in conjunction with phase cycling to eliminate unwanted signals in the \(^{31}\)P edited \(^{1}\)H spectra. The gradients \(G_1\) and \(G_2\) impart a phase label to the \(^{31}\)P magnetization that is later refocused after the magnetization has been transferred to \(^{1}\)H by the final coherence selection gradient, \(G_3\). Finally, a zero-quantum filter is included at the end of the sequence to further attenuate contributions from undesired coherence transfer pathways.\(^{30}\)

A recycle time of 10 s was used for both the regular and \(^{31}\)P edited experiments to ensure that the sample magnetization was at equilibrium before every scan. During the
recycle delay, the water resonance was saturated with a weak radio frequency field ($\gamma B_1/2\pi = 50$ Hz). Low power Waltz-16 decoupling ($\gamma B_1/2\pi = 625$ Hz) was used on the 31P channel during 1H acquisition to narrow the lines of the PC and GPC 1CH$_2$ resonances; this resulted in an increase (20%) in the sensitivity of the experiment. For the high-power pulses, the radiofrequency field strength ($\gamma B_1/2\pi$) was 40 kHz for 1H and 10 kHz for 31P on the 14 T instrument, and 35 kHz for 1H and 20 kHz for 31P on the 7 T instrument. For the 31P experiments, Waltz-16 decoupling ($\gamma B_1/2\pi = 2500$ Hz) was used on the 1H channel.

In the 31P edited 1H experiment, Gaussian 180° pulses were used to selectively decouple the 1H homonuclear scalar couplings during the INEPT steps. The selective pulses were 5 ms on the 14 T system and 10 ms on the 7 T system; for both systems the pulses were applied at 3.3 ppm. Consequently, these pulses refocused the 1CH$_2$ protons of choline, PC, and GPC, but left the 1CH$_3$ protons of these molecules unperturbed. The gradients G_1, G_2, G_3 and G_4 were set to 35, 15, 20, and 1 G cm$^{-1}$ and were 2.47, 2.47, 1, and 10 ms in length, respectively. The first three gradients were shaped to a half-sine bell; the shape of the fourth gradient was constant over the central 80% of the pulse and was smoothly ramped on and off at the ends of the pulse.

The sample temperature was maintained at 10°C with a cooling gas flow rate of 5351 h$^{-1}$ for the experiments at 14 T to minimize any potential problems owing to sample degradation. The experiments at 7 T were performed at 25°C. The temperature was controlled to be better than ±0.2°C during the experiments; temperature stability is important for quantitation as the efficiency of the heteronuclear transfer steps varies with temperature.

Standards

The standard samples consisted of between 0 and 5 mM PC, between 0 and 5 mM GPC, and 3.1 mM choline in 10% D$_2$O–90% H$_2$O. D$_2$O was included in the sample for the purpose of locking the magnet field. All spectra for the standards were acquired with 16 scans (each spectrum required just under 3 min to complete). The pH of each sample was adjusted to be in the range 6–7.5 by the addition of small amounts of HCl or NaOH.

Solutions of human brain tumor metabolites

Eleven samples of human glioma (malignant brain tumor) extracts were prepared using the FastPrep$^\text{TM}$ and Speed Vac$^\text{TM}$ systems (Thermo Savant, Holbrook, NY, USA) according to the following procedure. Between 100 and 200 mg of frozen tissue samples from surgeries or autopsies were transferred into Lysing Matrix D tubes (Qbiogene, Carlsbad, CA, USA) along with 1.2 ml methanol. The sample tubes were then placed in the FastPrep$^\text{TM}$ system and processed for 35 s on speed dial 4.0. This was repeated at least three times until no visible tissue pieces remained. Next, a modified methanol–chloroform extraction was carried out.32 The resulting aqueous layer of brain metabolites was dried with the Speed Vac$^\text{TM}$ system and redissolved in D$_2$O. The pH of these samples was adjusted to be in the range 7–8. Since this preparation method is not a calibrated protocol for metabolite quantification, we observed a decrease in the absolute metabolite concentrations. For instance, the mean concentration for total choline was determined to be 0.31 ± 0.07 mM, which is only 25% of the literature values (1.24 ± 0.10 mM) for extracts of tumor tissues of similar type.$^{33–35}$ Although this reduction in concentration resulted in much longer experiment times, it did not interfere with the aim of this work, which was to test the capability of the 31P edited 1H spectral protocol to quantify PC and GPC concentrations of tissue extract samples. 1H spectra for the brain extracts were acquired using 1024 scans, resulting in an experiment time of 3.2 h. 31P edited 1H spectra were acquired using between 3096 and 5192 scans, resulting in experiment times ranging from 9.8 to 16.3 h.

RESULTS

31P edited spectra of the standards

The method described in this report concentrates on the measurement of signals from the 1CH$_3$ protons instead of the more intense signals that arise from the methyl protons. Focusing on the 1CH$_3$ protons has two main advantages. First, as seen in the regular 1H spectrum shown in Fig. 3(a), the signals from the 1CH$_3$ protons are dispersed over a range of 0.13 ppm instead of the 0.007 ppm range of the methyl protons. This suggests that the measurement of the 1CH$_3$ protons is better suited for situations, such as ex vivo tissue analyses, where the spectral resolution is limited to the point that the individual methyl resonances cannot be resolved. The second advantage is that the 1CH$_3$ protons for PC and GPC have observable (~ 6.1 and 6.3 Hz, respectively22) couplings to the 31P nucleus, which allows for the use of 31P editing. This fact is important as, without 31P editing, the 1H signals of the choline-compounds (especially those from the 1CH$_3$ resonances but also the methyl resonances) are mingled with signals from other metabolites, making quantification more difficult and less reliable.

The main disadvantage of our method is that the integral of the 1CH$_3$ protons is 4.5 times smaller than the integral of the methyl protons [note the separate intensity scale used for the methyl region in Fig. 3(a)]. Nevertheless, the quality of the 31P editing allows the relatively weak 1CH$_3$ peaks to be easily resolved and measured in a 31P edited 1H spectrum. With 31P editing,
the only peaks that remain in the 1H spectrum are those from the 1CH$_2$ protons of PC and GPC. The signal from the 1CH$_2$ protons of choline, which would have appeared at 3.95 ppm, is completely removed, as are the intense methyl signals at 3C24 3.1 ppm from all three choline compounds. The small artifact at 4.7 ppm in the 31P edited 1H spectrum is all that remains of the water signal after suppression by presaturation and coherence transfer pathway selection. This artifact has an integral close to zero and is 0.5 ppm downfield from the signals of interest, so it does not affect the integration of the GPC and PC signals.

Signals from choline are removed in the 31P editing step, so it is not possible to determine its concentration directly from the 31P edited 1H spectrum. However, the quantitative relationship between the 31P edited and the regular 1H spectra can be exploited to determine the choline concentration. This can be accomplished by determining the PC and GPC concentrations from the edited spectrum, and then using this information to subtract their contributions from the total integrated intensity of the methyl protons in the regular 1H spectrum. The remaining intensity corresponds to the concentration of choline. As a result, it is possible to determine the relative concentrations of all three species in cases where the individual methyl signals are not resolved.

Quantification of the amount of choline, PC, and GPC in a sample using 31P edited 1H spectra depends on the transfer efficiency of the INEPT steps. This transfer efficiency, in turn, depends on the 31P–1H coupling constants, pulse imperfections, and the transverse and longitudinal relaxation rates. The coupling constants are largely insensitive to sample conditions and the INEPT steps are reasonably tolerant of variations in pulse calibration, so the main difficulty with establishing the transfer efficiency stems from variations in the relaxation rates. For the range of concentrations used in our samples we found that the transfer efficiencies were independent of the relative concentrations of choline, PC, and GPC. However, relaxation rates (and therefore the transfer efficiency) depend on temperature so it is important to establish the transfer efficiency for whatever temperature is used for the experiment. For our experiments with brain tissue samples, which were kept at 10°C, we observed signal intensities in the 31P edited spectra that were 13.4 and 18.5% of the unedited signal intensities for 1H.

Figure 3. (a) 1H, (b) 31P filtered 1H, and (c) 31P spectra for a standard sample of 3.1 mM choline, 2.0 mM PC, and 1.0 mM GPC in 10% D$_2$O–90% H$_2$O. Each spectrum was acquired in 16 scans and with heteronuclear decoupling at 300 MHz for 1H. The lack of resolution in the methyl region (3.12–3.06 ppm) is what makes it hard to use the methyl peaks to quantify the concentrations of choline, PC, and GPC in tissue samples. In spectrum (a), the additional GPC peaks at 3.78 ppm and overlapping the 3CH$_2$ resonances at 3.5 ppm arise from the glycerol moiety. The relative scales for spectra (a) and (b) are indicated at the right of each part. All spectra were processed with 0.5 Hz of line broadening; baseline correction was used for spectrum (a) to compensate for the intense water signal at 4.7 ppm.
PC and GPC, respectively. These results are 54 and 74% of the theoretical maximum transfer efficiency of 25% (see Discussion section). At 25°C, the transfer efficiencies (PC = 24.1% and GPC = 20.1%) were much closer to the theoretical value, as would be expected based on the connection between temperature and relaxation rates for small molecules in solution.

The top half of Fig. 4 demonstrates the linear relationship between the PC and GPC peak integrals in the 31P edited 1H spectra and the PC and GPC concentrations for a series of standard samples.

Analyses of human brain extracts

We tested the applicability of 31P editing for the quantification of PC and GPC in biological systems using a series of 11 human glioma extract samples. Representative 600 MHz 1H spectra for one of these samples are shown in Fig. 5. From the subspectrum shown in Fig. 5(b), it is clear that the 1CH$_2$ resonances are overlapped by peaks from other metabolites in the regular 1H spectrum; this problem also affects the methyl resonances, although to a smaller extent. The complexity of the spectrum makes it difficult to quantify the relative amounts of the choline compounds using just the regular 1H spectrum.

In the 31P edited 1H spectrum [Fig. 5(c)], the 1CH$_2$ resonances are clearly resolved and the relative amounts of PC and GPC can be easily quantified. The additional peaks at 4.095 and 3.96 ppm arise from other phosphorus-containing brain metabolites such as, possibly, phosphoethanolamine (PE) and glycerophosphoethanolamine (GPE). If these additional peaks prove to be due to PE and GPE, then the use of 31P editing for quantification is even better justified. This is because the methyl signals of
PE and GPE interfere with the quantification of the PC, GPC, and choline methyl peaks in regular 1H spectra. In contrast, the PE and GPE peaks that appear in the 31P edited 1H spectrum are well-resolved and, consequently, do not affect the quantification of the 1CH$_2$ resonances from PC and GPC.

The graphs shown in the bottom half of Fig. 4 demonstrate the correlation between the results of fitting the methyl peaks in the regular 1H spectra (as has been done in the past) vs the results from the 31P edited 1H experiment. The variation seen in these graphs is not surprising owing to difficulties in quantifying the methyl peaks in the regular 1H spectra. These difficulties are due to: (1) the lack of baseline resolution between the methyl peaks, and (2) the presence of other components that overlap the methyl peaks. These difficulties can be expected to be greatly exacerbated when using an instrument at lower field or in the analysis of ex vivo tissue samples.

DISCUSSION

31P spectroscopy vs 31P edited 1H spectroscopy

As the 31P resonances of PC and GPC differ from one another by \sim3.5 ppm, it could be argued that a better approach for the quantification of PC and GPC would be to directly observe the 31P signal. In fact, with the development and availability of high field MR imagers, it has been demonstrated recently that PC and GPC can be observed in in $vivo$ 31P spectroscopy at 7 T from a voxel size of 27 ml. However, it may be better to utilize the improved sensitivity of 1H nuclei for detection due to the higher magnetogyric ratio of 1H, especially if an inverse geometry probehead is in use (as is often the case for ex vivo studies). This is clearly demonstrated in Fig. 3. The signal-to-noise ratio for the peaks in the 31P edited 1H spectrum [Fig. 3(b)] is roughly 10 times greater than the signal-to-noise ratio of the resonances in the 31P spectrum [Fig. 3(c)] when the line broadening is optimized. The signal-to-noise ratio was calculated as the ratio of the PC or GPC peak intensity to the root-mean-square noise of a signal-less spectral region. As quantitative work usually makes use of integrals instead of intensities, the comparison of these techniques based on their signal-to-noise ratios underestimates the advantages of the 31P-filtered 1H experiment because the peaks in the 31P spectrum are approximately 10 times narrower than the 1CH$_2$ peaks in the 31P filtered 1H spectrum. In addition, 31P nuclei typically relax more slowly than 1H nuclei, so 31P edited 1H spectra will have a further signal-to-noise advantage compared with 31P spectra when comparing data acquired with the same amount of experiment time instead of the same number of scans.
Signal intensities in 31P edited 1H spectra

The use of a 31P filter for editing in these experiments reduces the signal intensity due to the added restrictions to the coherence transfer pathway. In theory, the edited spectrum should have 50% of the intensity of the unedited spectrum if only phase cycling is used for selecting the coherence transfer pathway. However, we found that it was useful to supplement the phase cycling with pulsed field gradients to further attenuate artifacts in the spectrum. However, this comes at the price of an additional two-fold reduction in signal intensity, resulting in a total theoretical transfer efficiency of 25%.

INEPT transfer vs Hartman–Hahn mixing

We note that we also attempted to use heteronuclear Hartman–Hahn mixing for the heteronuclear transfer steps. However, the measured transfer efficiency was around 3%, much lower than the efficiency of INEPT transfers. The inefficiency of heteronuclear Hartman–Hahn mixing compared with INEPT is attributable to the longer periods required to complete the heteronuclear magnetization transfer as well as to interference from homonuclear Hartman–Hahn mixing.

Realistic experiment times

The use of a non-quantitative extraction procedure for the preparation of the human glioma samples used in this study led to relatively low metabolite concentrations. Consequently, the 1H spectra for the brain extracts were acquired using 1024 scans, resulting in an experiment time of 3.2 h, and the 31P edited 1H spectra were acquired using between 3096 and 5192 scans, resulting in quite lengthy experiment times of between 9.8 and 16.3 h. Owing to the low metabolite concentrations, as well as other factors, the measurement times used for these experiments are much longer than what will typically be needed. If samples were used with metabolite concentrations similar to those reported in the literature (which are about four times higher than the concentrations of the brain extract samples used for this study), then a spectrum equivalent to the results shown in Fig. 5 could be achieved while reducing the experiment time by a factor of 16. In addition, the signal-to-noise ratio (SNR) shown in Fig. 5 is greater than what is actually needed for quantification. If half the SNR were deemed acceptable for quantification, than the experiment time could be reduced by a factor of 4. Combined, these two changes would reduce the experiment time by a factor of 64, shortening a 9.8 h experiment to a much more reasonable 9.5 min experiment. In addition, experiment times can be further reduced by using shorter recycle delays as long as all samples are analyzed using the same conditions.

CONCLUSION

We have demonstrated a scheme that uses 31P edited 1H NMR spectroscopy to quantify the concentrations of phosphocholine and glycerophosphocholine in biological samples. In addition, the concentration of choline can be indirectly determined using this method. This method is particularly well-suited for analytical situations in which the 1CH$_2$ resonances are obscured by other metabolites and/or the methyl resonances are not sufficiently resolved. We believe this method will be applicable for the analysis of choline compounds in ex vivo tissue samples. In addition, if problems of sensitivity are resolved, this method may have potential for the in vivo non-destructive quantification of choline, PC and GPC.

Acknowledgements

The authors thank Profs. Robert G. Griffin and Franca Podo for useful discussion and Dr. Anthony Bielecki for assistance. N.M.L. thanks the National Institutes of Health for support via a National Research Service Award post-doctoral fellowship (F32 NS42425-01) and the Camille and Henry Dreyfus Foundation for support through a Faculty Start-Up Award. This work is supported in part by NIH NCI grants CA77727, CA095624, CA83159, and by NIH NIBIB grant EB002026.

REFERENCES

